2.3 Solving Equations Containing Fractions and Decimals

Objectives

In this section, you will learn to:

- Solve equations containing fractions
- Solve equations containing decimals

To successfully complete this section, you need to understand:

- Operations with real numbers (Chapter 1)
- Combining like terms (1.9)
- The Distributive Property (1.10)
- Solving linear equations (2.1 and 2.2)
- Finding the least common denominator (??)

INTRODUCTION

In Section 2.1 we solved equations that contained fractions. For example,
To solve $w-\frac{2}{5}=\frac{8}{5}$, we add $\frac{2}{5}$ to each side:

$$
\begin{aligned}
w-\frac{2}{5} & =\frac{8}{5} \\
w-\frac{2}{5}+\frac{2}{5} & =\frac{8}{5}+\frac{2}{5} \\
w+0 & =\frac{10}{5} \\
w & =2
\end{aligned}
$$

To solve $15=\frac{-5}{8} y$, we multiply each side by $\frac{-8}{5}$:

$$
\begin{aligned}
15 & =\frac{-5}{8} y \\
\frac{-8}{5} \cdot \frac{15}{1} & =\frac{-8}{5} \cdot \frac{-5}{8} y \\
\frac{-8}{1} \cdot \frac{3}{1} & =1 y \\
-24 & =y \\
y & =-24
\end{aligned}
$$

In some equations, though, it is easier - and more efficient-to clear any and all fractions, thereby making all of the constants and coefficients into integers.

For example, the equation $\frac{x}{9}+\frac{4}{3}=\frac{1}{2} x-1$ is easier to solve after its fractions are cleared and it has only integer constants and coefficients: $2 x+24=9 x-18$.

What is it that allows us to transform $\frac{x}{9}+\frac{4}{3}=\frac{1}{2} x-1$ into $2 x+24=9 x-18$? It is

1. our ability to find the least common denominator (LCD) for the three fractions (the LCD is 18);
2. our ability to multiply integers and fractions;
3. our ability to use the Distributive Property; and
4. our ability to apply the Multiplication Property of Equality:

The Multiplication Property of Equality

We may multiply any non-zero number, c, to each side of an equation.

$$
\begin{aligned}
\text { If } \quad a & =b, \\
\text { then } \quad c \cdot a & =c \cdot b, c \neq 0
\end{aligned}
$$

Applying the Multiplication Property of Equality to an equation such as $\frac{x}{9}+\frac{4}{3}=\frac{1}{2} x-1$ requires that we first prepare the equation by grouping each side as one quantity, using parentheses:

$$
\left(\frac{x}{9}+\frac{4}{3}\right)=\left(\frac{1}{2} x-1\right)
$$

It is then that we can apply the Multiplication Property of Equality and multiply each side by 18 :

$$
18 \cdot\left(\frac{x}{9}+\frac{4}{3}\right)=18 \cdot\left(\frac{1}{2} x-1\right)
$$

The solving of this equation will be completed later in this section. To learn the process, let's start with some simpler equations.

Equations Containing Fractions

Let us start with an equation that contains just one fraction, $2 x-1=\frac{3}{4} x+9$. It is possible to solve this equation by first adding $-\frac{3}{4} x$ to each side, but to avoid the time-consuming work involved with fractions, it is often helpful to first clear the fraction-or clear the denominator-and work only with integers.

Caution: "Clearing the fractions" requires us to multiply each full side of the equation - each and every term - by the same value, the common denominator. We do not multiply only the terms containing fractions.

~Instructor Insight

To this point, students have never been asked to create their own parentheses, so this extra step of preparation is introduced. After Example 1, it will become part of the multiplication step.

As stated above, and as shown in Example 1, we must prepare the equation for multiplication by grouping each side using parentheses:

$$
(2 x-1)=\left(\frac{3}{4} x+9\right)
$$

Example 1: \quad Solve this equation by first clearing the fraction(s).

$$
2 x-1=\frac{3}{4} x+9
$$

Procedure: There is only one fraction. Multiply each side by 4 to clear the fraction.

Answer: $\quad 2 x-1=\frac{3}{4} x+9$ $(2 x-1)=\left(\frac{3}{4} x+9\right) \quad$ Multiply each side by 4.
$\begin{aligned} 4(2 x-1)=4\left(\frac{3}{4} x+9\right) & \begin{array}{l}\text { Distribute } 4, \text { on each side } \\ \text { to the fraction } \frac{3}{4} x, \text { it is he }\end{array} \\ 2 x-4 \cdot 1=\frac{4}{1} \cdot \frac{3}{4} x+4 \cdot 9 & \frac{4}{1} \cdot \frac{3}{4} x \text { simplifies to } 3 x .\end{aligned}$ $\begin{array}{ll}8 x-4=3 x+36 & \begin{array}{l}\text { Reduce this to standard form } \\ \text { by adding }-3 x \text { to each side. }\end{array} \quad \text { Verify the solution, 8: }\end{array}$
$8 x+(-3 x)-4=3 x+(-3 x)+36 \quad$ Simplify each side.

$$
5 x-4=36
$$

$$
5 x-4+4=36+4
$$

$$
5 x=40
$$

$$
\frac{5 x}{5}=\frac{40}{5}
$$

The LCD is 4 . Prepare the equation by placing parentheses around each side.

Distribute 4 , on each side, to each term. To multiply 4 to the fraction $\frac{3}{4} x$, it is helpful to write 4 as $\frac{4}{1}$.

Isolate the variable term by adding +4 to each side.

Simplify each side.

Divide each side by 5 .

$$
15 \stackrel{?}{=} \frac{3}{1} \cdot \frac{2}{1}+9
$$

$$
?
$$

Simplify.

$$
16-1 \stackrel{?}{=} \frac{3}{4} \cdot \frac{8}{1}+9
$$

$$
15=6+9
$$

$$
x=8 \quad \lambda
$$

$$
15=15 \checkmark
$$

Note: The two steps of

1. preparing the equation for multiplication by placing parentheses around each side, and
2. showing the multiplication by the LCD
can be combined into one step, just as they are in the next example.

If an equation contains more than one fraction, then to clear all fractions, we must multiply by the least common denominator (LCD) of all the denominators. If the fractions already have a common denominator, then we multiply each side by that common denominator, as shown in Example 2.

Example 2: Solve this equation by first clearing the fractions.

$$
\frac{3 w}{2}+1=w+\frac{9}{2}
$$

Procedure: There is only one denominator, 2. Multiply each side by 2 to clear the fractions.

Answer: $\frac{3 w}{2}+1=w+\frac{9}{2} \quad$ The LCD is 2 . Prepare the equation by placing parentheses around each side. Multiply each side by 2 .

$$
\begin{aligned}
& \left(\frac{3 w}{2}+1\right) \quad \text { Distribute 2, on each side, to each term. } \\
& \text { Write } 2 \text { as } \frac{2}{1} \text { when multiplying the fractions } \\
& \frac{2}{1} \cdot \frac{3 w}{2}+2 \cdot 1=2 \cdot w+\frac{2}{1} \cdot \frac{9}{2} \quad \frac{2}{1} \cdot \frac{3 w}{2} \text { simplifies to } 3 w ; \frac{2}{1} \cdot \frac{9}{2} \text { simplifies to } 9 . \\
& 3 w+2=2 w+9 \quad \text { Reduce this to standard form } \\
& \text { by adding }-2 w \text { to each side. } \\
& 3 w+(-2 w)+2=2 w+(-2 w)+9 \quad \text { Simplify each side. } \\
& w+2=9 \\
& w+2+(-2)=9+(-2) \\
& w=7 \\
& \text { Verify the solution, 7: } \\
& \frac{3 w}{2}+1=w+\frac{9}{2} \\
& \frac{3(7)}{2}+1 \stackrel{?}{=} 7+\frac{9}{2} \\
& \frac{21}{2}+\frac{2}{2} \stackrel{?}{=} \frac{14}{2}+\frac{9}{2} \\
& \frac{23}{2}=\frac{23}{2} \checkmark
\end{aligned}
$$

$\overline{\text { YTI } 1 ~ S o l v e ~ e a c h ~ e q u a t i o n ~ b y ~ f i r s t ~ c l e a r i n g ~ t h e ~ f r a c t i o n s . ~ V e r i f y ~ t h e ~ s o l u t i o n . ~ U s e ~ E x a m p l e s ~}$ 1 and 2 as guides.
a) $\quad \frac{x}{3}=x+4$
b) $\quad m-3=\frac{4}{5} m-2$
c) $\quad \frac{x}{5}-4=2-\frac{2 x}{5}$
d) $\frac{1}{2}+w=8-\frac{3 w}{2}$

Fractions With Different Denominators

If the denominators are different, we must identify the LCD before we multiply. Then, to clear the fractions, we must multiply each side by the LCD.

Example 3: Solve each equation by first clearing the fractions.

a) $\frac{x}{3}+1=\frac{5 x}{6}-3$
b) $\frac{y}{4}+\frac{1}{12}=\frac{y}{3}-\frac{1}{6}$

Procedure: First identify the LCD, then multiply each side of the equation by the LCD to clear the fractions.

Answer:
a) $\frac{x}{3}+1=\frac{5 x}{6}-3$

The LCD is 6 . Prepare the equation by placing parentheses around each side. Multiply each side by 6.

$$
\mathbf{6}\left(\frac{x}{3}+1\right)=6\left(\frac{5 x}{6}-3\right) \quad \text { Distribute } 6, \text { or } \frac{6}{1} \text {, on each side, to each term. }
$$

$$
\frac{6}{1} \cdot \frac{x}{3}+6 \cdot 1=\frac{6}{1} \cdot \frac{5 x}{6}-6 \cdot 3 \quad \text { Simplify. }
$$

$$
\begin{array}{ll}
2 x+6=5 x-18 & \begin{array}{l}
\text { Reduce this to standard form } \\
\text { by adding }-2 x \text { to each side. }
\end{array}
\end{array}
$$

$$
2 x+(-2 x)+6=5 x+(-2 x)-18 \quad \text { Simplify }
$$

$$
6=3 x-18 \quad \text { Isolate the variable term }
$$

by adding 18 to each side.

$$
6+18=3 x-18+18 \quad \text { Simplify }
$$

$$
24=3 x \quad \text { Divide each side by } 3
$$

$$
\frac{24}{3}=\frac{3 x}{3}
$$

$$
8=x
$$

$$
x=8 \pi
$$

b) $\quad \frac{y}{4}+\frac{1}{12}=\frac{y}{3}-\frac{1}{6}$

The LCD is 12 . Prepare the equation by placing parentheses around each side. Multiply each side by 12 .

$$
\begin{aligned}
& 12\left(\frac{y}{4}+\frac{1}{12}\right)=12\left(\frac{y}{3}-\frac{1}{6}\right) \quad \text { Distribute } 12 \text {, or } \frac{12}{1} \text {, on each side, to each term. } \\
& \frac{12}{1} \cdot \frac{y}{4}+\frac{12}{1} \cdot \frac{1}{12}=\frac{12}{1} \cdot \frac{y}{3}-\frac{12}{1} \cdot \frac{1}{6} \quad \text { Simplify. } \\
& 3 y+1=4 y-2 \quad \begin{array}{l}
\text { Reduce this to standard form } \\
\text { by adding - } 3 y \text { to each side. }
\end{array} \\
& 3 y+(-3 y)+1=4 y+(-3 y)-2 \\
& 1=y-2 \\
& 1+2=y-2+2 \quad \text { Simplify } . \\
& 3=y \\
& y=3 \\
& \mid \text { Verify the solution, 3: } \\
& \text { Isolate the variable term by } \\
& \text { adding }+2 \text { to each side. } \\
& \text { Simplify. } \\
& \frac{y}{4}+\frac{1}{12} \stackrel{?}{=} \quad \frac{y}{3}-\frac{1}{6} \\
& \frac{3}{4}+\frac{1}{12} \stackrel{?}{=} \quad \frac{3}{3}-\frac{1}{6} \\
& \frac{9}{12}+\frac{1}{12} \stackrel{?}{=} \frac{6}{6}-\frac{1}{6} \\
& \frac{10}{12} \stackrel{?}{=} \frac{5}{6} \\
& \frac{5}{6}=\frac{5}{6} \checkmark
\end{aligned}
$$

$\overline{\text { YTI 2 }}$ Solve each equation by first identifying the LCD and clearing the fractions. Verify the solution. Use Example 3 as a guide.
a) $\frac{3 y}{4}-6=\frac{y}{8}+4$
b) $p-\frac{p}{6}=\frac{p}{3}+2$
c) $\quad \frac{3 x}{20}+\frac{1}{10}=\frac{x}{4}-\frac{1}{5}$
d) $\frac{w}{4}+\frac{11}{12}=\frac{1}{2}-\frac{w}{6}$

Equations Containing Decimals

Recall from Section 1.2 that terminating decimals are rational numbers (fractions) in which the denominators are powers of 10 , such as 10,100 , and so on. For example, $0.3=\frac{3}{10}$ and $0.25=\frac{25}{100}$.

Consider an equation that contains these two fraction: $\frac{3}{10} x=\frac{25}{100} x+1$. We can clear the fractions by multiplying each side by the LCD of 100 , changing it to an equation of integers: $30 x=25 x+100$.

If this same equation is written with decimals instead of fractions, it would be $0.3 x=0.25 x+1$. Because this is the same equation, we also can multiply each side by 100 , but this time we will clear the decimals.

One major distinction, when clearing decimals, is to prepare the equation by first writing each constant and coefficient with the same number of decimal places.

For example, each number in the equation $0.3 x=0.25 x+1$ can be written with two decimal places:

- For 0.3 , we can place one zero at the end of the number: $0.3=0.30$
- For 1 , we can place a decimal point and two zeros at the end of the number: $1=1.00$
- 0.25 already has two decimal places, so no change is necessary.

The equation becomes $0.30 x=0.25 x+1.00$. Now having two decimal places, each number is in terms of hundredths, and we can clear the decimals by multiplying each side by 100 :

$$
\begin{aligned}
100(0.30 x) & =100(0.25 x+1.00) \\
30 x & =25 x+100
\end{aligned} \quad \begin{aligned}
& \text { Multiplying by } 100 \text { has the effect of moving } \\
& \text { the decimal point two places to the right. }
\end{aligned}
$$

It is now an equation of integers, and we can solve it using the techniques learned earlier in this chapter.

Preparing an equation by creating an equal number of decimal places is an important first step when clearing decimals in an equation.

Example 4: For each equation,

- What number of decimal places should each constant and coefficient have?
- Prepare the equation by building up each number, as necessary.
- By what number should we multiply each side of the equation to clear the decimals?
a) $0.4 x-1.2=0.15 x+0.8$
b) $0.12 y-1=0.095 y-0.9$

Procedure: For each equation, the constant or coefficient with the highest number of decimal places indicates the number of decimal places each should have.
a) 0.15 has two decimal places so we should build up each number to have two decimal places
b) 0.008 has three decimal places so we should build up each number to have three decimal places

> Number of decimal places New equation

Answer:
$\begin{array}{lll}\text { a) Two } & 0.40 x-1.20=0.15 x+0.80 \\ \text { b) } & \text { Three } & 0.120 y-1.000=0.095 y-0.900\end{array}$
$\begin{array}{lll}\text { a) Two } & 0.40 x-1.20=0.15 x+0.80 \\ \text { b) } & \text { Three } & 0.120 y-1.000=0.095 y-0.900\end{array}$
100
b) Three
$0.120 y-1.000=0.095 y-0.900$
1,000

Multiply each side by
$\overline{\text { YTI } 3}$ For each equation,

- Decide the number of decimal places each constant and coefficient should have;
- Prepare the equation by building up each number, as necessary; and
- Decide what number to multiply each side of the equation to clear the decimals.

> Number of decimal places

New equation

Multiply each side by
a) $2 w-0.4=1+1.8 w$
b) $0.17 k-0.43=0.25 k+0.05$
c) $0.27 v-1.6=0.32 v-2$
d) $0.1 x-0.006=0.08 x+0.134$

Example 5: \quad Solve the equation by first clearing the decimals.
a) $0.4 x-1.2=0.15 x+0.8$
b) $0.12 y-1=0.095 y-0.9$

Procedure: Use the information from the pervious example to prepare the equation for clearing the decimals.

Answer:

$$
\text { a) } \begin{aligned}
0.4 x-1.2 & =0.15 x+0.8 & \begin{array}{l}
\text { Write each decimal so that it } \\
\text { has two decimal places. }
\end{array} \\
0.40 x-1.20 & =0.15 x+0.80 & \begin{array}{l}
\text { Prepare the equation by placing parentheses } \\
\text { around each side. Multiply each side by } 100
\end{array} \\
100(0.40 x-1.20) & =100(0.15 x+0.80) & \begin{array}{l}
\text { Distribute. Multiplying by } \\
100 \text { will clear all decimals. }
\end{array} \\
40 x-120 & =15 x+80 & \begin{array}{l}
\text { Reduce this to standard form } \\
\text { by adding -15x to each side. }
\end{array} \\
40 x+(-15 x)-120 & =15 x+(-15 x)+80 & \text { Simplify. }
\end{aligned}
$$

YTI 4 Solve the equation by first clearing the decimals. Verify the solution. Use Example 5 as a guide.
b) $2 w-0.4=1+1.8 w$
b) $0.17 k-0.43=0.25 k+0.05$
c) $0.27 v-1.6=0.32 v-2$
d) $0.1 x-0.006=0.08 x+0.134$

Solving Equations: The Ultimate Guidelines

Here is a summary of the steps involved in solving a variety of linear equations. Not all steps will be necessary for each equation; you should apply the guidelines in the order presented here but may skip any guideline that does not apply. For example, if an equation has no fractions, you may skip guideline (2) and proceed to guideline (3).

Solving Linear Equations: The Ultimate Guidelines

The Preparation:

1. Eliminate any parentheses by distributing.
2. Clear any fractions or decimals by multiplying each side by the equation's LCD.
3. Combine like terms on each individual side.

Isolating the Variable:

4. If necessary, reduce the equation to standard form.
5. If necessary, isolate the variable term then finish solving.

The Ultimate Guidelines say that parentheses should be cleared first. This is true even if fractions are involved; in other words, if an equation has both fractions (or decimals) and parentheses, then it is best to clear the parentheses before trying to clear any fractions (or decimals).

Example 6: Solve each equation and verify the solution.
a) $\frac{1}{2}\left(x+\frac{2}{3}\right)=3(x-1)$
b) $0.2(3 y-5)=0.15(2 y+3)-0.85$

Procedure: First distribute, then clear the fractions or decimals.
Answer:
a) $\quad \frac{1}{2}\left(x+\frac{2}{3}\right)=3(x-1) \quad$ Distribute and simplify; $\frac{1}{2} \cdot \frac{2}{3}=\frac{1}{3}$

$$
\begin{array}{rlrl}
\frac{1}{2} x+\frac{1}{3} & =3 x-3 & & \begin{array}{l}
\text { The LCD is } 6 . \text { Prepare the equation by placing } \\
\text { parentheses around each side. Multiply each side by } 6 .
\end{array} \\
\frac{\mathbf{6}}{1}\left(\frac{1}{2} x+\frac{1}{3}\right) & =6(3 x-3) & & \text { Simplify: } \frac{6}{1} \cdot \frac{1}{2} x=3 x \text { and } \frac{6}{1} \cdot \frac{1}{3}=2 . \\
3 x+2 & =18 x-18 & \begin{array}{l}
\text { Reduce this to standard form } \\
\text { by adding }-3 x \text { to each side. }
\end{array} \\
3 x+(-3 x)+2 & =18 x+(-3 x)-18 & & \text { Simplify. }
\end{array}
$$

$$
\begin{aligned}
& \text { b) } \quad 0.2(3 y-5)=0.15(2 y+3)-0.85 \quad \text { Distribute. } \\
& 0.6 y-1.0=0.30 y+0.45-0.85 \quad \begin{array}{l}
\text { Write each decimal so that } \\
\text { it has two decimal places }
\end{array} \\
& 0.60 y-1.00=0.30 y+0.45-0.85 \\
& 100(0.60 y-1.00)=(0.30 y+0.45-0.85) 100 \\
& 60 y-100=30 y+45-85 \\
& 60 y-100=30 y-40 \\
& 60 y+(-30 y)-100=30 y+(-30 y)-40 \\
& 30 y-100=-40 \\
& 30 y-100+100=-40+100 \\
& 30 y=60 \\
& \frac{30 y}{30}=\frac{60}{30} \\
& y=2 \\
& \text { You finish it: } \\
& \text { Verify that } 2 \text { is the solution. }
\end{aligned}
$$

YTI 5 Solve each equation and verify the solution. Use example 6 as a guide.
a) $\quad \frac{1}{2}(2 h-1)=\frac{1}{3}\left(2 h+\frac{1}{2}\right)$
b) $\quad 0.5(p+3)=3(0.1+0.16 p)$
c) $\quad \frac{1}{8}(3 y+2)=\frac{1}{4}\left(2 y+\frac{1}{2}\right)+\frac{1}{2}$
d) $\quad 0.6(10 n-3)=1.5(n+2)-0.3$

Answers: You Try It and Think About It

YTI 1:
a) $x=-6$
b) $m=5$
c) $x=10$
d) $w=3$

YTI 2:
a) $y=16$
b) $p=4$
c) $x=3$
d) $w=-1$

YTI 3:
a) One; $2.0 w-0.4=1.0+1.8 w ; 10$
b) $\mathrm{T} w o ; 0.17 k-0.43=0.25 k+0.05 ; 100$
c) $\mathrm{T} w \mathrm{o} ; 0.27 v-1.60=0.32 v-2.00 ; 100$
d) Three; $0.100 x-0.006=0.080 x+0.134 ; 1,000$

YTI 4:
a) $w=7$
b) $\quad k=-6$
c) $\quad v=8$
d) $x=7$

YTI 5:
a) $h=2$
b) $\quad p=-60$
c) $y=-3$
d) $n=1$

Think About It:

There are no Think About It exercises in this section.

Section 2.3 Exercises

Think Again.

1. Consider the equation $2 x+1=\frac{1}{4}\left(\frac{1}{2} x+4\right)$. What is the least common denominator on the right side of this equation?
2. If an equation contains decimals, why is it helpful for all of the constants and coefficients to have the same number of decimal places?

Focus Exercises.
Solve each equation. Verify your answer.
3. $x+\frac{3 x}{4}=7$
4. $t-6=\frac{3}{2} t$
5. $y-\frac{y}{4}=12$
6. $\frac{8}{3}+x=\frac{5}{3} x$
7. $z+\frac{3}{5}=\frac{z}{5}$
9. $\frac{7}{4} h=\frac{1}{4} h-12 w$
11. $w+\frac{1}{7}=\frac{6 w}{7}-1$
13. $\frac{y}{8}+6=6-\frac{5 y}{8}$
15. $2-\frac{n}{8}=4 n+\frac{5}{8}$
17. $\frac{5 y}{2}-9=\frac{2 y}{3}+2$
19. $1-\frac{5}{8} x=2-\frac{2}{3} x$
21. $\frac{2 r}{3}+\frac{1}{9}=2 r-\frac{2 r}{9}$
23. $\frac{3 x}{5}+\frac{1}{6}=\frac{x}{2}-\frac{1}{3}$
25. $\frac{1}{3} x+\frac{3}{5} x=\frac{9}{10} x-\frac{1}{15}$
27. $0.6 x-3.2=0.4-0.3 x$
29. $0.2 x+0.5=0.7 x-4$
31. $0.2 y-0.3=0.4-0.5 y$
8. $\frac{y}{6}=y+5$
10. $\frac{4}{9} w+5=\frac{5}{9}$
12. $6+\frac{x}{5}=\frac{4 x}{5}-3$
14. $\frac{m}{2}+2=\frac{4 m}{5}+2$
16. $\frac{w}{3}+5=\frac{8 w}{3}-2$
18. $p-\frac{p}{8}=\frac{p}{4}-10$
20. $y+\frac{3}{4}=\frac{y}{4}+\frac{7}{8}$
22. $\frac{5}{8}+\frac{1}{6} z=\frac{5}{12}+z$
24. $\frac{5 t}{9}-\frac{3}{4}=\frac{1}{12}+\frac{5 t}{8}$
26. $\frac{1}{4} p+\frac{2}{5} p=\frac{1}{2} p-\frac{9}{20}$
28. $0.29 x-0.25=0.43 x+0.03$
30. $0.3 x+1.38=0.24 x+1.2$
32. $0.7-0.5 x=1.2 x-2.7$
33. $-1.6-0.9 w=11.6+2.4 w$
35. $0.128-0.035 v=-0.072 v+0.235$
37. $0.7 p-0.4=3.52-0.28 p$
39. $0.48 x-1.9=0.54 x-4$
41. $-0.51 x-3.2=0.8 x+7.28$
43. $\frac{1}{5}(5 x-3)=\frac{2}{3}\left(x+\frac{1}{2}\right)$
45. $\frac{1}{6}(1-6 x)=-\frac{1}{3}\left(6 x+\frac{1}{2}\right)$
47. $\frac{3}{8}(m+8)-\frac{3}{16}=2\left(m+\frac{3}{4}\right)+\frac{1}{2}$
49. $3.75-2.5(p+1)=0.5 p+4.25$
34. $0.25 r-1.25=0.55-0.35 r$
36. $0.3 x+4.2=0.1 x+4$
38. $4.72 n-0.1=8+0.67 n$
40. $0.1 m+0.008=0.06 m-0.172$
42. $-0.32 v+0.18 v=0.25 v-1.95$
44. $\frac{1}{4}(2 y+3)=3\left(\frac{1}{3}-y\right)$
46. $\frac{1}{2}\left(2 t-\frac{3}{4}\right)+\frac{2}{5}=\frac{4}{5} t$
48. $0.3(x+5)=5(0.1+0.11 x)$
50. $2.3 y=0.15(2 y-3)-0.6$

Think Outside the Box:

Solve each.
51. $\frac{2 x-18}{4}=\frac{3 x+1}{2}$
53. $\frac{x+3}{8}-\frac{x}{2}=5$
52. $\frac{x+9}{5}=\frac{x-7}{10}$
54. $\frac{x-5}{6}=\frac{x}{4}-1$

